When is Ridge regression favorable over Lasso regression?

When is Ridge regression favorable over Lasso regression?



Answer: You can quote ISLR's authors Hastie, Tibshirani who asserted that, in presence of few variables with medium / large sized effect, use lasso regression. In presence of many variables with small / medium sized effect, use ridge regression.

Conceptually, we can say, lasso regression (L1) does both variable selection and parameter shrinkage, whereas Ridge regression only does parameter shrinkage and end up including all the coefficients in the model. In presence of correlated variables, ridge regression might be the preferred choice. Also, ridge regression works best in situations where the least square estimates have higher variance. Therefore, it depends on our model objective.

Popular posts from this blog

Is rotation necessary in PCA? If yes, Why? What will happen if you don't rotate the components?

After analyzing the model, your manager has informed that your regression model is suffering from multicollinearity. How would you check if he's true? Without losing any information, can you still build a better model?

What does Latency mean?