Cross-validation

What is cross-validation?


Cross-validation, sometimes called 'rotation estimation', is a model validation technique for assessing how the results of a statistical analysis will generalize to an independent data set. It is mainly used in settings where the goal is prediction, and one wants to estimate how accurately a predictive model will perform in practice. In a prediction problem, a model is usually given a dataset of known data on which training is run (training dataset), and a dataset of unknown data (or first seen data) against which the model is tested (testing dataset). The goal of cross validation is to define a dataset to "test" the model in the training phase (i.e., the validation dataset), in order to limit problems like overfitting, give an insight on how the model will generalize to an independent dataset (i.e., an unknown dataset, for instance from a real problem), etc.


How Cross-validation works?


One round of cross-validation involves partitioning a sample of data into complementary subsets, performing the analysis on one subset (called the training set), and validating the analysis on the other subset (called the validation set or testing set). To reduce variability, multiple rounds of cross-validation are performed using different partitions, and the validation results are averaged over the rounds.

In summary, cross-validation combines (averages) measures of fit (prediction error) to derive a more accurate estimate of model prediction performance.

Why not conventional validation?


One of the main reasons for using cross-validation instead of using the conventional validation (e.g. partitioning the data set into two sets of 70% for training and 30% for test) is that there is not enough data available to partition it into separate training and test sets without losing significant modelling or testing capability. In these cases, a fair way to properly estimate model prediction performance is to use cross-validation as a powerful general technique.

Types of cross-validation

1. Exhaustive cross-validation
2. Leave-p-out cross-validation
3. Leave-one-out cross-validation
4. Non-exhaustive cross-validation
5. k-fold cross-validation
6. 2-fold cross-validation
7. Repeated random sub-sampling validation

Popular posts from this blog

After analyzing the model, your manager has informed that your regression model is suffering from multicollinearity. How would you check if he's true? Without losing any information, can you still build a better model?

Is rotation necessary in PCA? If yes, Why? What will happen if you don't rotate the components?

What does Latency mean?