What are random forests?

What are random forests?



A random forest is a collection of decision trees that have been trained on randomly selected subsets of the training instances and explanatory variables. Random forests usually make predictions by returning the mode or mean of the predictions of their constituent trees; scikit-learn's implementations return the mean of the trees' predictions. Random forests are less prone to overfitting than decision trees because no single tree can learn from all of the instances and explanatory variables; no single tree can memorize all of the noise in the representation.


Popular posts from this blog

After analyzing the model, your manager has informed that your regression model is suffering from multicollinearity. How would you check if he's true? Without losing any information, can you still build a better model?

Is rotation necessary in PCA? If yes, Why? What will happen if you don't rotate the components?

What does Latency mean?